Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
N Engl J Med ; 388(7): 609-620, 2023 02 16.
Article in English | MEDLINE | ID: covidwho-2258655

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) can cause serious lower respiratory tract disease in older adults, but no licensed RSV vaccine currently exists. An adenovirus serotype 26 RSV vector encoding a prefusion F (preF) protein (Ad26.RSV.preF) in combination with RSV preF protein was previously shown to elicit humoral and cellular immunogenicity. METHODS: We conducted a randomized, double-blind, placebo-controlled, phase 2b, proof-of-concept trial to evaluate the efficacy, immunogenicity, and safety of an Ad26.RSV.preF-RSV preF protein vaccine. Adults who were 65 years of age or older were randomly assigned in a 1:1 ratio to receive vaccine or placebo. The primary end point was the first occurrence of RSV-mediated lower respiratory tract disease that met one of three case definitions: three or more symptoms of lower respiratory tract infection (definition 1), two or more symptoms of lower respiratory tract infection (definition 2), and either two or more symptoms of lower respiratory tract infection or one or more symptoms of lower respiratory tract infection plus at least one systemic symptom (definition 3). RESULTS: Overall, 5782 participants were enrolled and received an injection. RSV-mediated lower respiratory tract disease meeting case definitions 1, 2, and 3 occurred in 6, 10, and 13 vaccine recipients and in 30, 40, and 43 placebo recipients, respectively. Vaccine efficacy was 80.0% (94.2% confidence interval [CI], 52.2 to 92.9), 75.0% (94.2% CI, 50.1 to 88.5), and 69.8% (94.2% CI, 43.7 to 84.7) for case definitions 1, 2, and 3, respectively. After vaccination, RSV A2 neutralizing antibody titers increased by a factor of 12.1 from baseline to day 15, a finding consistent with other immunogenicity measures. Percentages of participants with solicited local and systemic adverse events were higher in the vaccine group than in the placebo group (local, 37.9% vs. 8.4%; systemic, 41.4% vs. 16.4%); most adverse events were mild to moderate in severity. The frequency of serious adverse events was similar in the vaccine group and the placebo group (4.6% and 4.7%, respectively). CONCLUSIONS: In adults 65 years of age or older, Ad26.RSV.preF-RSV preF protein vaccine was immunogenic and prevented RSV-mediated lower respiratory tract disease. (Funded by Janssen Vaccines and Prevention; CYPRESS ClinicalTrials.gov number, NCT03982199.).


Subject(s)
Antibodies, Neutralizing , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Aged , Humans , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Double-Blind Method , Respiratory Syncytial Virus Infections/blood , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/adverse effects , Respiratory Syncytial Virus Vaccines/therapeutic use , Respiratory Syncytial Virus, Human/immunology , Respiratory Tract Infections/blood , Respiratory Tract Infections/immunology , Respiratory Tract Infections/prevention & control , Vaccine Efficacy , Immunogenicity, Vaccine/immunology , Treatment Outcome
2.
Nat Microbiol ; 7(12): 1996-2010, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2185886

ABSTRACT

Measuring immune correlates of disease acquisition and protection in the context of a clinical trial is a prerequisite for improved vaccine design. We analysed binding and neutralizing antibody measurements 4 weeks post vaccination as correlates of risk of moderate to severe-critical COVID-19 through 83 d post vaccination in the phase 3, double-blind placebo-controlled phase of ENSEMBLE, an international randomized efficacy trial of a single dose of Ad26.COV2.S. We also evaluated correlates of protection in the trial cohort. Of the three antibody immune markers we measured, we found most support for 50% inhibitory dilution (ID50) neutralizing antibody titre as a correlate of risk and of protection. The outcome hazard ratio was 0.49 (95% confidence interval 0.29, 0.81; P = 0.006) per 10-fold increase in ID50; vaccine efficacy was 60% (43%, 72%) at non-quantifiable ID50 (<2.7 IU50 ml-1) and increased to 89% (78%, 96%) at ID50 = 96.3 IU50 ml-1. Comparison of the vaccine efficacy by ID50 titre curves for ENSEMBLE-US, the COVE trial of the mRNA-1273 vaccine and the COV002-UK trial of the AZD1222 vaccine supported the ID50 titre as a correlate of protection across trials and vaccine types.


Subject(s)
Ad26COVS1 , COVID-19 , Humans , COVID-19/prevention & control , ChAdOx1 nCoV-19 , 2019-nCoV Vaccine mRNA-1273 , Vaccine Efficacy , Antibodies, Neutralizing
4.
Lancet Infect Dis ; 22(12): 1703-1715, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2031763

ABSTRACT

BACKGROUND: Despite the availability of effective vaccines against COVID-19, booster vaccinations are needed to maintain vaccine-induced protection against variant strains and breakthrough infections. This study aimed to investigate the efficacy, safety, and immunogenicity of the Ad26.COV2.S vaccine (Janssen) as primary vaccination plus a booster dose. METHODS: ENSEMBLE2 is a randomised, double-blind, placebo-controlled, phase 3 trial including crossover vaccination after emergency authorisation of COVID-19 vaccines. Adults aged at least 18 years without previous COVID-19 vaccination at public and private medical practices and hospitals in Belgium, Brazil, Colombia, France, Germany, the Philippines, South Africa, Spain, the UK, and the USA were randomly assigned 1:1 via a computer algorithm to receive intramuscularly administered Ad26.COV2.S as a primary dose plus a booster dose at 2 months or two placebo injections 2 months apart. The primary endpoint was vaccine efficacy against the first occurrence of molecularly confirmed moderate to severe-critical COVID-19 with onset at least 14 days after booster vaccination, which was assessed in participants who received two doses of vaccine or placebo, were negative for SARS-CoV-2 by PCR at baseline and on serology at baseline and day 71, had no major protocol deviations, and were at risk of COVID-19 (ie, had no PCR-positive result or discontinued the study before day 71). Safety was assessed in all participants; reactogenicity, in terms of solicited local and systemic adverse events, was assessed as a secondary endpoint in a safety subset (approximately 6000 randomly selected participants). The trial is registered with ClinicalTrials.gov, NCT04614948, and is ongoing. FINDINGS: Enrolment began on Nov 16, 2020, and the primary analysis data cutoff was June 25, 2021. From 34 571 participants screened, the double-blind phase enrolled 31 300 participants, 14 492 of whom received two doses (7484 in the Ad26.COV2.S group and 7008 in the placebo group) and 11 639 of whom were eligible for inclusion in the assessment of the primary endpoint (6024 in the Ad26.COV2.S group and 5615 in the placebo group). The median (IQR) follow-up post-booster vaccination was 36·0 (15·0-62·0) days. Vaccine efficacy was 75·2% (adjusted 95% CI 54·6-87·3) against moderate to severe-critical COVID-19 (14 cases in the Ad26.COV2.S group and 52 cases in the placebo group). Most cases were due to the variants alpha (B.1.1.7) and mu (B.1.621); endpoints for the primary analysis accrued from Nov 16, 2020, to June 25, 2021, before the global dominance of delta (B.1.617.2) or omicron (B.1.1.529). The booster vaccine exhibited an acceptable safety profile. The overall frequencies of solicited local and systemic adverse events (evaluated in the safety subset, n=6067) were higher among vaccine recipients than placebo recipients after the primary and booster doses. The frequency of solicited adverse events in the Ad26.COV2.S group were similar following the primary and booster vaccinations (local adverse events, 1676 [55·6%] of 3015 vs 896 [57·5%] of 1559, respectively; systemic adverse events, 1764 [58·5%] of 3015 vs 821 [52·7%] of 1559, respectively). Solicited adverse events were transient and mostly grade 1-2 in severity. INTERPRETATION: A homologous Ad26.COV2.S booster administered 2 months after primary single-dose vaccination in adults had an acceptable safety profile and was efficacious against moderate to severe-critical COVID-19. Studies assessing efficacy against newer variants and with longer follow-up are needed. FUNDING: Janssen Research & Development.


Subject(s)
COVID-19 , Vaccines , Adult , Humans , Adolescent , SARS-CoV-2 , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Ad26COVS1 , Double-Blind Method , Immunogenicity, Vaccine , Antibodies, Viral
5.
Immunol Rev ; 310(1): 47-60, 2022 09.
Article in English | MEDLINE | ID: covidwho-1886676

ABSTRACT

Since its emergence in late 2019, the coronavirus disease 2019 (COVID-19) pandemic has caused substantial morbidity and mortality. Despite the availability of efficacious vaccines, new variants with reduced sensitivity to vaccine-induced protection are a troubling new reality. The Ad26.COV2.S vaccine is a recombinant, replication-incompetent human adenovirus type 26 vector encoding a full-length, membrane-bound severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein in a prefusion-stabilized conformation. This review discusses the immunogenicity and efficacy of Ad26.COV2.S as a single-dose primary vaccination and as a homologous or heterologous booster vaccination. Ad26.COV2.S elicits broad humoral and cellular immune responses, which are associated with protective efficacy/effectiveness against SARS-CoV-2 infection, moderate to severe/critical COVID-19, and COVID-19-related hospitalization and death, including against emerging SARS-CoV-2 variants. The humoral immune responses elicited by Ad26.COV2.S vaccination are durable, continue to increase for at least 2-3 months postvaccination, and involve a range of functional antibodies. Ad26.COV2.S given as a heterologous booster to mRNA vaccine-primed individuals markedly increases humoral and cellular immune responses. The use of Ad26.COV2.S as primary vaccination and as part of booster regimens is supporting the ongoing efforts to control and mitigate the COVID-19 pandemic.


Subject(s)
COVID-19 Vaccines , COVID-19 , Ad26COVS1 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Pandemics/prevention & control , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
6.
J Infect Dis ; 226(6): 979-982, 2022 09 21.
Article in English | MEDLINE | ID: covidwho-1886441

ABSTRACT

This secondary analysis of the phase 3 ENSEMBLE trial (NCT04505722) assessed the impact of preexisting humoral immunity to adenovirus 26 (Ad26) on the immunogenicity of Ad26.COV2.S-elicited severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody levels in 380 participants in Brazil, South Africa, and the United States. Among those vaccinated in Brazil and South Africa, 31% and 66%, respectively, had prevaccination serum-neutralizing activity against Ad26, with little preexisting immunity detected in the United States. Vaccine recipients in each country had similar postvaccination spike (S) protein-binding antibody levels, indicating that baseline immunity to Ad26 has no clear impact on vaccine-induced immune responses.


Subject(s)
Adenoviridae Infections , COVID-19 , Ad26COVS1 , Adenoviridae , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Genetic Vectors , Humans , Immunity, Cellular , Immunity, Humoral , Immunogenicity, Vaccine , SARS-CoV-2
7.
Vaccine ; 40(32): 4403-4411, 2022 07 30.
Article in English | MEDLINE | ID: covidwho-1878404

ABSTRACT

BACKGROUND: Ad26.COV2.S is a well-tolerated and effective vaccine against COVID-19. We evaluated durability of anti-SARS-CoV-2 antibodies elicited by single-dose Ad26.COV2.S and the impact of boosting. METHODS: In randomized, double-blind, placebo-controlled, phase 1/2a and phase 2 trials, participants received single-dose Ad26.COV2.S (5 × 1010 viral particles [vp]) followed by booster doses of 5 × 1010 vp or 1.25 × 1010 vp. Neutralizing antibody levels were determined by a virus neutralization assay (VNA) approximately 8-9 months after dose 1. Binding and neutralizing antibody levels were evaluated by an enzyme-linked immunosorbent assay and pseudotyped VNA 6 months after dose 1 and 7 and 28 days after boosting. RESULTS: Data were analyzed from phase 1/2a participants enrolled from 22 July-18 December 2020 (Cohort 1a, 18-55 years [y], N = 25; Cohort 2a, 18-55y, N = 17; Cohort 3, ≥65y, N = 22), and phase 2 participants from 14 to 22 September 2020 (18-55y and ≥ 65y, N = 73). Single-dose Ad26.COV2.S elicited stable neutralizing antibodies for at least 8-9 months and stable binding antibodies for at least 6 months, irrespective of age. A 5 × 1010 vp 2-month booster dose increased binding antibodies by 4.9- to 6.2-fold 14 days post-boost versus 28 days after initial immunization. A 6-month booster elicited a steep and robust 9-fold increase in binding antibody levels 7 days post-boost. A 5.0-fold increase in neutralizing antibodies was observed by 28 days post-boost for the Beta variant. A 1.25 × 1010 vp 6-month booster elicited a 3.6-fold increase in binding antibody levels at 7 days post-boost versus pre-boost, with a similar magnitude of post-boost responses in both age groups. CONCLUSIONS: Single-dose Ad26.COV2.S elicited durable antibody responses for at least 8 months and elicited immune memory. Booster-elicited binding and neutralizing antibody responses were rapid and robust, even with a quarter vaccine dose, and stronger with a longer interval since primary vaccination. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04436276, NCT04535453.


Subject(s)
Ad26COVS1 , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Randomized Controlled Trials as Topic , SARS-CoV-2
8.
BMJ Open ; 12(3): e055596, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1736069

ABSTRACT

INTRODUCTION: Ebola virus disease (EVD) continues to be a significant public health problem in sub-Saharan Africa, especially in the Democratic Republic of the Congo (DRC). Large-scale vaccination during outbreaks may reduce virus transmission. We established a large population-based clinical trial of a heterologous, two-dose prophylactic vaccine during an outbreak in eastern DRC to determine vaccine effectiveness. METHODS AND ANALYSIS: This open-label, non-randomised, population-based trial enrolled eligible adults and children aged 1 year and above. Participants were offered the two-dose candidate EVD vaccine regimen VAC52150 (Ad26.ZEBOV, Modified Vaccinia Ankara (MVA)-BN-Filo), with the doses being given 56 days apart. After vaccination, serious adverse events (SAEs) were passively recorded until 1 month post dose 2. 1000 safety subset participants were telephoned at 1 month post dose 2 to collect SAEs. 500 pregnancy subset participants were contacted to collect SAEs at D7 and D21 post dose 1 and at D7, 1 month, 3 months and 6 months post dose 2, unless delivery was before these time points. The first 100 infants born to these women were given a clinical examination 3 months post delivery. Due to COVID-19 and temporary suspension of dose 2 vaccinations, at least 50 paediatric and 50 adult participants were enrolled into an immunogenicity subset to examine immune responses following a delayed second dose. Samples collected predose 2 and at 21 days post dose 2 will be tested using the Ebola viruses glycoprotein Filovirus Animal Non-Clinical Group ELISA. For qualitative research, in-depth interviews and focus group discussions were being conducted with participants or parents/care providers of paediatric participants. ETHICS AND DISSEMINATION: Approved by Comité National d'Ethique et de la Santé du Ministère de la santé de RDC, Comité d'Ethique de l'Ecole de Santé Publique de l'Université de Kinshasa, the LSHTM Ethics Committee and the MSF Ethics Review Board. Findings will be presented to stakeholders and conferences. Study data will be made available for open access. TRIAL REGISTRATION NUMBER: NCT04152486.


Subject(s)
Ebola Vaccines , Hemorrhagic Fever, Ebola , Adult , COVID-19 , Child , Clinical Trials, Phase III as Topic , Democratic Republic of the Congo/epidemiology , Ebola Vaccines/adverse effects , Female , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Humans , Immunization Schedule
9.
N Engl J Med ; 386(9): 847-860, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1684178

ABSTRACT

BACKGROUND: The Ad26.COV2.S vaccine was highly effective against severe-critical coronavirus disease 2019 (Covid-19), hospitalization, and death in the primary phase 3 efficacy analysis. METHODS: We conducted the final analysis in the double-blind phase of our multinational, randomized, placebo-controlled trial, in which adults were assigned in a 1:1 ratio to receive single-dose Ad26.COV2.S (5×1010 viral particles) or placebo. The primary end points were vaccine efficacy against moderate to severe-critical Covid-19 with onset at least 14 days after administration and at least 28 days after administration in the per-protocol population. Safety and key secondary and exploratory end points were also assessed. RESULTS: Median follow-up in this analysis was 4 months; 8940 participants had at least 6 months of follow-up. In the per-protocol population (39,185 participants), vaccine efficacy against moderate to severe-critical Covid-19 at least 14 days after administration was 56.3% (95% confidence interval [CI], 51.3 to 60.8; 484 cases in the vaccine group vs. 1067 in the placebo group); at least 28 days after administration, vaccine efficacy was 52.9% (95% CI, 47.1 to 58.1; 433 cases in the vaccine group vs. 883 in the placebo group). Efficacy in the United States, primarily against the reference strain (B.1.D614G) and the B.1.1.7 (alpha) variant, was 69.7% (95% CI, 60.7 to 76.9); efficacy was reduced elsewhere against the P.1 (gamma), C.37 (lambda), and B.1.621 (mu) variants. Efficacy was 74.6% (95% CI, 64.7 to 82.1) against severe-critical Covid-19 (with only 4 severe-critical cases caused by the B.1.617.2 [delta] variant), 75.6% (95% CI, 54.3 to 88.0) against Covid-19 leading to medical intervention (including hospitalization), and 82.8% (95% CI, 40.5 to 96.8) against Covid-19-related death, with protection lasting 6 months or longer. Efficacy against any severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was 41.7% (95% CI, 36.3 to 46.7). Ad26.COV2.S was associated with mainly mild-to-moderate adverse events, and no new safety concerns were identified. CONCLUSIONS: A single dose of Ad26.COV2.S provided 52.9% protection against moderate to severe-critical Covid-19. Protection varied according to variant; higher protection was observed against severe Covid-19, medical intervention, and death than against other end points and lasted for 6 months or longer. (Funded by Janssen Research and Development and others; ENSEMBLE ClinicalTrials.gov number, NCT04505722.).


Subject(s)
Ad26COVS1 , COVID-19/prevention & control , Vaccine Efficacy/statistics & numerical data , Ad26COVS1/adverse effects , Ad26COVS1/immunology , Adolescent , Adult , COVID-19/epidemiology , COVID-19/mortality , Double-Blind Method , Follow-Up Studies , Hospitalization/statistics & numerical data , Humans , Immunogenicity, Vaccine , Kaplan-Meier Estimate , Middle Aged , Patient Acuity , SARS-CoV-2 , Young Adult
10.
N Engl J Med ; 385(6): 571, 2021 08 05.
Article in English | MEDLINE | ID: covidwho-1347961
12.
Nature ; 596(7871): 268-272, 2021 08.
Article in English | MEDLINE | ID: covidwho-1262005

ABSTRACT

The Ad26.COV2.S vaccine1-3 has demonstrated clinical efficacy against symptomatic COVID-19, including against the B.1.351 variant that is partially resistant to neutralizing antibodies1. However, the immunogenicity of this vaccine in humans against SARS-CoV-2 variants of concern remains unclear. Here we report humoral and cellular immune responses from 20 Ad26.COV2.S vaccinated individuals from the COV1001 phase I-IIa clinical trial2 against the original SARS-CoV-2 strain WA1/2020 as well as against the B.1.1.7, CAL.20C, P.1 and B.1.351 variants of concern. Ad26.COV2.S induced median pseudovirus neutralizing antibody titres that were 5.0-fold and 3.3-fold lower against the B.1.351 and P.1 variants, respectively, as compared with WA1/2020 on day 71 after vaccination. Median binding antibody titres were 2.9-fold and 2.7-fold lower against the B.1.351 and P.1 variants, respectively, as compared with WA1/2020. Antibody-dependent cellular phagocytosis, complement deposition and natural killer cell activation responses were largely preserved against the B.1.351 variant. CD8 and CD4 T cell responses, including central and effector memory responses, were comparable among the WA1/2020, B.1.1.7, B.1.351, P.1 and CAL.20C variants. These data show that neutralizing antibody responses induced by Ad26.COV2.S were reduced against the B.1.351 and P.1 variants, but functional non-neutralizing antibody responses and T cell responses were largely preserved against SARS-CoV-2 variants. These findings have implications for vaccine protection against SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Ad26COVS1 , Adolescent , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Humans , Immunity, Cellular , Immunity, Humoral , Middle Aged , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Young Adult
13.
Ann Intern Med ; 174(5): 585-594, 2021 05.
Article in English | MEDLINE | ID: covidwho-1248392

ABSTRACT

BACKGROUND: Zika virus (ZIKV) may cause severe congenital disease after maternal-fetal transmission. No vaccine is currently available. OBJECTIVE: To assess the safety and immunogenicity of Ad26.ZIKV.001, a prophylactic ZIKV vaccine candidate. DESIGN: Phase 1 randomized, double-blind, placebo-controlled clinical study. (ClinicalTrials.gov: NCT03356561). SETTING: United States. PARTICIPANTS: 100 healthy adult volunteers. INTERVENTION: Ad26.ZIKV.001, an adenovirus serotype 26 vector encoding ZIKV M-Env, administered in 1- or 2-dose regimens of 5 × 1010 or 1 × 1011 viral particles (vp), or placebo. MEASUREMENTS: Local and systemic adverse events; neutralization titers by microneutralization assay (MN50) and T-cell responses by interferon-γ enzyme-linked immunospot and intracellular cytokine staining; and protectivity of vaccine-induced antibodies in a subset of participants through transfer in an exploratory mouse ZIKV challenge model. RESULTS: All regimens were well tolerated, with no safety concerns identified. In both 2-dose regimens, ZIKV neutralizing titers peaked 14 days after the second vaccination, with geometric mean MN50 titers (GMTs) of 1065.6 (95% CI, 494.9 to 2294.5) for 5 × 1010 vp and 956.6 (595.8 to 1535.8) for 1 × 1011 vp. Titers persisted for at least 1 year at a GMT of 68.7 (CI, 26.4-178.9) for 5 × 1010 vp and 87.0 (CI, 29.3 to 258.6) for 1 × 1011 vp. A 1-dose regimen of 1 × 1011 vp Ad26.ZIKV.001 induced seroconversion in all participants 56 days after the first vaccination (GMT, 103.4 [CI, 52.7 to 202.9]), with titers persisting for at least 1 year (GMT, 90.2 [CI, 38.4 to 212.2]). Env-specific cellular responses were induced. Protection against ZIKV challenge was observed after antibody transfer from participants into mice, and MN50 titers correlated with protection in this model. LIMITATION: The study was conducted in a nonendemic area, so it did not assess safety and immunogenicity in a flavivirus-exposed population. CONCLUSION: The safety and immunogenicity profile makes Ad26.ZIKV.001 a promising candidate for further development if the need reemerges. PRIMARY FUNDING SOURCE: Janssen Vaccines and Infectious Diseases.


Subject(s)
Viral Vaccines/immunology , Zika Virus Infection/prevention & control , Adenoviridae/immunology , Adult , Animals , Double-Blind Method , Female , Humans , Male , Mice , United States , Zika Virus/immunology , Zika Virus Infection/immunology
14.
JAMA ; 325(15): 1535-1544, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-1222577

ABSTRACT

Importance: Control of the global COVID-19 pandemic will require the development and deployment of safe and effective vaccines. Objective: To evaluate the immunogenicity of the Ad26.COV2.S vaccine (Janssen/Johnson & Johnson) in humans, including the kinetics, magnitude, and phenotype of SARS-CoV-2 spike-specific humoral and cellular immune responses. Design, Setting, and Participants: Twenty-five participants were enrolled from July 29, 2020, to August 7, 2020, and the follow-up for this day 71 interim analysis was completed on October 3, 2020; follow-up to assess durability will continue for 2 years. This study was conducted at a single clinical site in Boston, Massachusetts, as part of a randomized, double-blind, placebo-controlled phase 1 clinical trial of Ad26.COV2.S. Interventions: Participants were randomized to receive 1 or 2 intramuscular injections with 5 × 1010 viral particles or 1 × 1011 viral particles of Ad26.COV2.S vaccine or placebo administered on day 1 and day 57 (5 participants in each group). Main Outcomes and Measures: Humoral immune responses included binding and neutralizing antibody responses at multiple time points following immunization. Cellular immune responses included immunospot-based and intracellular cytokine staining assays to measure T-cell responses. Results: Twenty-five participants were randomized (median age, 42; age range, 22-52; 52% women, 44% male, 4% undifferentiated), and all completed the trial through the day 71 interim end point. Binding and neutralizing antibodies emerged rapidly by day 8 after initial immunization in 90% and 25% of vaccine recipients, respectively. By day 57, binding and neutralizing antibodies were detected in 100% of vaccine recipients after a single immunization. On day 71, the geometric mean titers of spike-specific binding antibodies were 2432 to 5729 and the geometric mean titers of neutralizing antibodies were 242 to 449 in the vaccinated groups. A variety of antibody subclasses, Fc receptor binding properties, and antiviral functions were induced. CD4+ and CD8+ T-cell responses were induced. Conclusion and Relevance: In this phase 1 study, a single immunization with Ad26.COV2.S induced rapid binding and neutralization antibody responses as well as cellular immune responses. Two phase 3 clinical trials are currently underway to determine the efficacy of the Ad26.COV2.S vaccine. Trial Registration: ClinicalTrials.gov Identifier: NCT04436276.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunity, Cellular , Immunogenicity, Vaccine , Adult , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , Double-Blind Method , Female , Humans , Immunity, Humoral , Male , Middle Aged , Vaccine Potency , Young Adult
15.
N Engl J Med ; 384(23): 2187-2201, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1196903

ABSTRACT

BACKGROUND: The Ad26.COV2.S vaccine is a recombinant, replication-incompetent human adenovirus type 26 vector encoding full-length severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein in a prefusion-stabilized conformation. METHODS: In an international, randomized, double-blind, placebo-controlled, phase 3 trial, we randomly assigned adult participants in a 1:1 ratio to receive a single dose of Ad26.COV2.S (5×1010 viral particles) or placebo. The primary end points were vaccine efficacy against moderate to severe-critical coronavirus disease 2019 (Covid-19) with an onset at least 14 days and at least 28 days after administration among participants in the per-protocol population who had tested negative for SARS-CoV-2. Safety was also assessed. RESULTS: The per-protocol population included 19,630 SARS-CoV-2-negative participants who received Ad26.COV2.S and 19,691 who received placebo. Ad26.COV2.S protected against moderate to severe-critical Covid-19 with onset at least 14 days after administration (116 cases in the vaccine group vs. 348 in the placebo group; efficacy, 66.9%; adjusted 95% confidence interval [CI], 59.0 to 73.4) and at least 28 days after administration (66 vs. 193 cases; efficacy, 66.1%; adjusted 95% CI, 55.0 to 74.8). Vaccine efficacy was higher against severe-critical Covid-19 (76.7% [adjusted 95% CI, 54.6 to 89.1] for onset at ≥14 days and 85.4% [adjusted 95% CI, 54.2 to 96.9] for onset at ≥28 days). Despite 86 of 91 cases (94.5%) in South Africa with sequenced virus having the 20H/501Y.V2 variant, vaccine efficacy was 52.0% and 64.0% against moderate to severe-critical Covid-19 with onset at least 14 days and at least 28 days after administration, respectively, and efficacy against severe-critical Covid-19 was 73.1% and 81.7%, respectively. Reactogenicity was higher with Ad26.COV2.S than with placebo but was generally mild to moderate and transient. The incidence of serious adverse events was balanced between the two groups. Three deaths occurred in the vaccine group (none were Covid-19-related), and 16 in the placebo group (5 were Covid-19-related). CONCLUSIONS: A single dose of Ad26.COV2.S protected against symptomatic Covid-19 and asymptomatic SARS-CoV-2 infection and was effective against severe-critical disease, including hospitalization and death. Safety appeared to be similar to that in other phase 3 trials of Covid-19 vaccines. (Funded by Janssen Research and Development and others; ENSEMBLE ClinicalTrials.gov number, NCT04505722.).


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunogenicity, Vaccine , Ad26COVS1 , Adolescent , Adult , Aged , Asymptomatic Diseases/epidemiology , COVID-19/epidemiology , COVID-19/mortality , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Double-Blind Method , Female , Hospitalization/statistics & numerical data , Humans , Incidence , Male , Middle Aged , Patient Acuity , Proportional Hazards Models , Young Adult
16.
17.
N Engl J Med ; 384(19): 1824-1835, 2021 05 13.
Article in English | MEDLINE | ID: covidwho-1029938

ABSTRACT

BACKGROUND: Efficacious vaccines are urgently needed to contain the ongoing coronavirus disease 2019 (Covid-19) pandemic of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A candidate vaccine, Ad26.COV2.S, is a recombinant, replication-incompetent adenovirus serotype 26 (Ad26) vector encoding a full-length and stabilized SARS-CoV-2 spike protein. METHODS: In this multicenter, placebo-controlled, phase 1-2a trial, we randomly assigned healthy adults between the ages of 18 and 55 years (cohort 1) and those 65 years of age or older (cohort 3) to receive the Ad26.COV2.S vaccine at a dose of 5×1010 viral particles (low dose) or 1×1011 viral particles (high dose) per milliliter or placebo in a single-dose or two-dose schedule. Longer-term data comparing a single-dose regimen with a two-dose regimen are being collected in cohort 2; those results are not reported here. The primary end points were the safety and reactogenicity of each dose schedule. RESULTS: After the administration of the first vaccine dose in 805 participants in cohorts 1 and 3 and after the second dose in cohort 1, the most frequent solicited adverse events were fatigue, headache, myalgia, and injection-site pain. The most frequent systemic adverse event was fever. Systemic adverse events were less common in cohort 3 than in cohort 1 and in those who received the low vaccine dose than in those who received the high dose. Reactogenicity was lower after the second dose. Neutralizing-antibody titers against wild-type virus were detected in 90% or more of all participants on day 29 after the first vaccine dose (geometric mean titer [GMT], 212 to 354), regardless of vaccine dose or age group, and reached 96% by day 57 with a further increase in titers (GMT, 288 to 488) in cohort 1a. Titers remained stable until at least day 71. A second dose provided an increase in the titer by a factor of 2.6 to 2.9 (GMT, 827 to 1266). Spike-binding antibody responses were similar to neutralizing-antibody responses. On day 15, CD4+ T-cell responses were detected in 76 to 83% of the participants in cohort 1 and in 60 to 67% of those in cohort 3, with a clear skewing toward type 1 helper T cells. CD8+ T-cell responses were robust overall but lower in cohort 3. CONCLUSIONS: The safety and immunogenicity profiles of Ad26.COV2.S support further development of this vaccine candidate. (Funded by Johnson & Johnson and the Biomedical Advanced Research and Development Authority of the Department of Health and Human Services; COV1001 ClinicalTrials.gov number, NCT04436276.).


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Ad26COVS1 , Adolescent , Adult , Antibodies, Neutralizing/blood , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Cohort Studies , Double-Blind Method , Humans , Male , Middle Aged , Young Adult
18.
Vaccine ; 39(22): 3081-3101, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-813888

ABSTRACT

Replication-incompetent adenoviral vectors have been under investigation as a platform to carry a variety of transgenes, and express them as a basis for vaccine development. A replication-incompetent adenoviral vector based on human adenovirus type 26 (Ad26) has been evaluated in several clinical trials. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety and features of recombinant viral vector vaccines. This paper reviews features of the Ad26 vectors, including tabulation of safety and risk assessment characteristics of Ad26-based vaccines. In the Ad26 vector, deletion of E1 gene rendering the vector replication incompetent is combined with additional genetic engineering for vaccine manufacturability and transgene expression optimization. These vaccines can be manufactured in mammalian cell lines at scale providing an effective, flexible system for high-yield manufacturing. Ad26 vector vaccines have favorable thermostability profiles, compatible with vaccine supply chains. Safety data are compiled in the Ad26 vaccine safety database version 4.0, with unblinded data from 23 ongoing and completed clinical studies for 3912 participants in five different Ad26-based vaccine programs. Overall, Ad26-based vaccines have been well tolerated, with no significant safety issues identified. Evaluation of Ad26-based vaccines is continuing, with >114,000 participants vaccinated as of 4th September 2020. Extensive evaluation of immunogenicity in humans shows strong, durable humoral and cellular immune responses. Clinical trials have not revealed impact of pre-existing immunity to Ad26 on vaccine immunogenicity, even in the presence of Ad26 neutralizing antibody titers or Ad26-targeting T cell responses at baseline. The first Ad26-based vaccine, against Ebola virus, received marketing authorization from EC on 1st July 2020, as part of the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen. New developments based on Ad26 vectors are underway, including a COVID-19 vaccine, which is currently in phase 3 of clinical evaluation.


Subject(s)
COVID-19 , Ebolavirus , Viral Vaccines , Animals , COVID-19 Vaccines , Genetic Vectors , Humans , Risk Assessment , SARS-CoV-2 , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL